Tag Archives: epigenetics

Macrophages Like IL-10 and DNA Methylation Regulates Tregs

This week on TIBDI, we see a plethora of interesting articles including a parallel publication about the necessity of IL-10 conditioning for gut macrophages and the ways that DNA methylation influences colon Treg proliferation.

IL10 Crystal Structure.rsh
IL-10 is an important conditioning factor for gut macrophages.
Intestinal Macrophages Need IL-10 Conditioning: Parallel Publication

Macrophages are an important immune cell of the intestines. For instance, CX3CR1hi macrophages capture antigens from the lumen by extending dendrites up through the epithelial layer and into the mucus to interact with passing bacteria. In the latest set of publications by the journal Immunity, parallel articles examine the relationship between macrophages and the anti-inflammatory cytokine interleukin (IL)-10. Using two different approaches, Dr. Ehud Zigmond of the Weizmann Institute of Science in Israel and Dr. Dror S. Shouval of Harvard Medical School in the United States were able to make similar conclusions.

Dr. Zigmond, using macrophage-restricted Il-10-/- and Il-10ra-/- mice, determined that macrophages with deficient IL-10 secretion were not nearly so harmful to the gut as macrophages not being able to respond to IL-10. Losing the ability to be conditioned by IL-10 made the macrophages more pro-inflammatory and led to spontaneous colitis. Dr. Shouval approached his research by creating bone-marrow chimeras with Rag2-/-Il-10rb-/- bone marrow and using the T cell transfer model of colitis. He found that loss of IL-10 signaling in innate immune cells led to colitis development. His work, unlike that of Dr. Zigmond, revealed that IL-10 conditioned macrophages are needed for proper regulatory T cell (Treg) development, and mucosal immune tolerance. He also found that pediatric inflammatory bowel disease (IBD) patients with mutations in their IL-10 receptors also had more pro-inflammatory macrophages. This work may lead to insights about why IBD develops.

Colonic Treg Proliferation Needs Uhrf1

Finding the ways that epigenetic mechanisms control T cell function and numbers is an exciting new field of research. One of the latest Nature Immunology articles adds fuel to the fire by publishing the work of Dr. Yuuki Obata of the University of Tokyo in Japan. She found that the DNA-methylation adaptor Uhrf1 was needed for Treg proliferation in the colon. This was determined by profiling genes activated in proliferating Treg after colonization with bacteria. This was then confirmed using T cell-specific Uhrf1-/- mice. Loss of Uhrf1 led to hypomethylation of a cell-cycle gene and a loss of Treg division in the colon. As a consequence of the low Treg numbers, Uhrf1-/- mice developed spontaneous colitis. It will be interesting to see if the same results can be found in the human setting.

References

New and Exciting Ways to Control Th17 Differentiation

The basic unit of chromatin organization is the nucleosome, which comprises 147 bp of DNA wrapped ar
Controlling DNA packing could be a future way to alter T cell differentiation for IBD.
This week on TIBDI we get an overload on new Th17 research including Th17 induction via segmented filamentous bacteria and dendritic cells, the role of methyltransferases during T cell differentiation, and, my own article describing how TLR6 stimulation in the gut leads to increased Th17.

Segmented Filamentous Bacteria, DCs and Th17

It is already well described that segmented filamentous bacteria (SFB) are associated with the induction of Th17 cells in the gut, and that Th17 is associated with inflammatory bowel disease (IBD). However, the mechanisms behind the induction were not entirely clear. Yoshiyuki Goto and Casandra Panea of Columbia University Medical Center worked together to answer these questions, and found that dendritic cells (DCs) were the missing link. They determined that DCs presented SFB via MHC class II molecules to T cells, and induced SFB-directed Th17 cells. These interactions were not limited to areas of lymphoid tissue, but also happened in the small intestinal lamina propria. Interestingly, RORγt+ innate lymphoid cells simultaneously played an inhibiting role also via MHC class II molecules.

TLR6 Involved with Intestinal Inflammation

Pattern recognition receptors, like those from the Toll-like Receptor (TLR) family, alert the immune system when pathogens enter areas of the body. While this system is essential for fighting infection, the same receptors also induce inflammation during IBD. To learn more about TLR6 in intestinal inflammation, Dr. M.E. Morgan of Utrecht University in the Netherlands and her colleagues looked at immune responses induced in the gut both in vitro and in vivo. They found that stimulation of TLR6 in the gastrointestinal-associated lymphoid tissue supported the induction of Th1 and Th17 cells, and oral feeding of TLR6 ligands induced Th17 cells. Mice deficient in TLR6 had lower numbers of Th1 and Th17 cells, and were also protected from experimental colitis suggesting that TLR6 could be an interesting candidate for future IBD therapeutics.

Chromatin Control of T Cell Differentiation

Histone methyltransferases modify histones (by adding methyl groups to lysine residues) to control DNA packing and gene accessibility. These kinds changes could impact IBD. Recent research has indicated that the methyltransferase G9A controls a repressive modification called H3K9me2 that influences T cell differentiation. Dr. Frann Antignano of the University of British Columbia in Canada now sheds more light on this process. She found that G9A dynamically inhibited the differentiation of regulatory T cells and Th17, and that loss of G9A specifically led to more activity of the Foxp3 and Rorγt genes, which are the master transcription factor of regulatory T cells and Th17 cells respectively. Specifically eliminating G9A from T cells transferred during the T cell transfer colitis model increased regulatory T differentiation and lowered disease. This could mean that targeting histone methyltransferases could be a potential IBD therapy.

References