Tag Archives: T cells

The Crohn’s Disease Gender Bias and Neutrophils Disrupt the Gut

Neutrophils
Neutrophils (with purple irregular nuclei) can shed proteins that disrupt the intestinal barrier.
This week on TIBDI! Neutrophils shed a protein that disrupts the intestinal barrier, hormones and T cells are behind Crohn’s disease gender skewing, and CD31 is the newest way to make dendritic cells anti-inflammatory.

Neutrophils Bust Up the Intestinal Barrier

During inflammatory bowel disease (IBD), neutrophils gather at sites of inflammation and often migrate through the intestinal epithelial barrier. A new model described by Dr. Dominique A. Weber and Dr. Ronen Sumagin now shows how dangerous this behavior is for intestinal wound healing. They found that neutrophils shed junctional adhesion molecule-like protein (JAML) during epithelial transmigration. JAML binds to a receptor found on epithelial cells called coxsackie-adenovirus receptor (CAR), and JAML and CAR interactions cause epithelial barriers to become leaky. While this leakiness may be needed for initial efficient immune cell infiltration, shed JAML prevents the barrier from regaining normal function and stops wound closure. Experiments showed that blocking JAML-CAR interactions could lead to accelerated wound repair. This discovery could help treat IBD-induced intestinal ulcerations.

Why Crohn’s Disease Prefers Women

There is a general acceptance that the prevalence of Crohn’s disease (CD) is higher in women than in men. W.A. Goodman and R.R. Garg of Case Western Reserve University School of Medicine suspected that this gender bias might be the same in spontaneous models of CD. This is, indeed, the situation. Female SAMP1/YitFc (SAMP) mice were more predisposed to spontaneous CD and had impaired regulatory T cells with low frequencies as compared to the male SAMP mice. An investigation of the T cells revealed that male SAMP T cells responded much differently than female SAMP T cells to estrogen signals. While the male T cells responded by increasing immunosuppressive functions and expanding regulatory T cells, the female cells were resistant to these signals. Finding ways to make female T cells sensitive to estrogen signals could decrease female susceptibility to CD.

More Ways to Induce Anti-inflammatory Dendritic Cells

CD31 is expressed on many types of immune cells and endothelial cells, and it is mainly seen as an adhesion and migration molecule. Recent evidence has shown that it also has inhibitory function on T cells, which means that it might have inhibitory functions in other cells. Marc Clement of the French National Institute of Health and Medical Research (INSERM) has now found that this is, indeed, the situation with dendritic cells (DCs). Signaling via CD31 prevented DC maturation, migration and reduced pro-inflammatory signaling cascades. CD31-stimulated DC also preferentially polarized T cells towards a regulatory phenotype, and transfer of these DCs to a rodent model of multiple sclerosis delayed disease development. These results suggest that CD31 may also be potentially interesting for IBD.

References

New Insights about NOD2 and Th17 Differentiation

microRNA Mir210
This little piece of RNA has the power to influence Th17 differentiation.
This week on TIBDI: NOD2 and IFNγ work together to recruit cells to the small intestine, and a microRNA offers an interesting way to control Th17 differentiation.

NOD2 Behind Intestinal T Cell Recruitment

One of the most important receptors involved with Crohn’s disease (CD) is NOD2, a pattern recognition receptor that recognizes bacterial cell walls. Dr. Xingxin Wu of the Yale University School of Medicine investigated its involvement in an acute intestinal disease model induced by systemic anti-CD3. His results provide unique insight into infiltration dynamics of the characteristic CD8+ T cells found in the small intestine of this model. He discovered that NOD2 stimulation was needed for optimal infiltration. Without these signals, chemokines, specifically CXCR3-ligands, were not secreted by macrophages, dendritic cells and stromal cells. This prevented CD8+ T cells from leaving the circulation and entering the intestinal lamina propria. Moreover, the loss of CD8+ T cells in the small intestine led to reduced IFNγ, which also plays a role in stimulating immune cell chemotaxis.

Unexpected MicroRNA Control of Th17

During low oxygen conditions, immune cells upregulate transcription factors that turn on genes that help them cope with the hypoxia. One of these transcription factors, HIF-1α, also contributes to the differentiation of Th17 cells, which are important in the pathogenesis of inflammatory bowel disease (IBD). In an extremely interesting Nature Immunology publication, Dr. Haopeng Wang of the University of California in San Francisco described how the microRNA Mir210 inhibited HIF-1α expression and Th17 differentiation. MicroRNAs are small RNAs that prevent gene expression. By controlling the abundance of Mir210, he was also able to influence the numbers of Th17 T cells differentiated in vitro. Using the T cell transfer model of colitis with genetically manipulated T cells, which lacked Mir210 expression, he found that Mir210-deficient T cells caused increased numbers of Th17 and worsened symptoms. The authors suggest that drugs that function similarly to Mir210 could be interesting therapeutics.

References

  • Wang, H., Flach, H., Onizawa, M., Wei, L., McManus, M. T., & Weiss, A. (2014). Negative regulation of Hif1a expression and T. Nature Immunology, 1–10. doi:10.1038/ni.2846
  • Wu, X., Lahiri, A., Haines, G. K., Flavell, R. A., & Abraham, C. (2014). NOD2 Regulates CXCR3-Dependent CD8+ T Cell Accumulation in Intestinal Tissues with Acute Injury. The Journal of Immunology. doi:10.4049/jimmunol.1302436

SIRT1 and Stress Suppress Regulatory T Cells

High traffic
Is it actually our stressful lives that are setting the stage for inflammatory bowel disease?
This week on TIBDI: Human stem cell transplantation redefines T cell repertoires, SIRT1 blocks the development of induced regulatory T cells, and stress sets the stage for intestinal inflammation.

Stem Cell Transplantation Wipes CD4+ T cell Memory

Human stem cell transplantation (HSCT) is a potential treatment for severe cases of inflammatory bowel disease (IBD). One way that HSCT works is by resetting the adaptive immune system. However, few studies have looked in depth at changes in the T cell repertoires. Dr. Paolo Muraro from the Imperial College of London has now addressed this question. In a HSCT trial for multiple sclerosis (MS) patients, he and his team used high-throughput sequencing to assess T cell receptor changes in 24 patients. They found that CD4+ and CD8+ T cells responded differently to HSCT. The patients’ CD4+ T cells were redefined and had a new repertoire of clones, while the CD8+ T cells reflected pre-HSCT clones. Resetting CD4+ T cells could be one reason why that HSCT is also successful for IBD.

SIRT1 Suppresses Suppressor Induction

Regulatory T cells (Tregs) are known to be important in IBD, and work from animal models shows that they can regulate the severity of symptoms. Previous work by Dr. Tatiana Akimova and her colleagues at the Children’s Hospital of Philadelphia demonstrated a connection between SIRT1 and Tregs. To investigate this more in induced Tregs, they used SIRT1 deficient cells in the T cell transfer model of colitis. Loss of SIRT1 increased the induction of Tregs and effectively attenuated colitis development. This result was mirrored in dextran sodium sulfate colitis using an inhibitor of SIRT1 (EX-527). It will be interesting in the future to see if targeting SIRT1 will work in a therapeutic setting.

Stress Hinders Regulatory T Cells

Most IBD patients are quite aware that stress plays a role in their disease progression. However, the connection between stress and IBD remains shaky. Dr. Wei Wu of Tongji University considered that the missing link could be Treg function. To test this concept, they stressed mice and investigated the Tregs both in vitro and in vivo. Tregs from stressed mice were unable to function as normal, and some expressed IL-17 and TNFα. Prolactin, a stress mediator, mediated this change via dendritic cells. Stressed mice were highly susceptible to colitis, however, blocking prolactin reduced colitis. The authors feel that stress and prolactin set the stage for IBD development by the conversion of Tregs from effective suppressors to harmful pro-inflammatory T cells.

References

The Dark Side of Retinoic Acid and Interleukin-22

Salmonella species growing on XLD agar - Showing H2S production
IL-22 secretion during intestinal inflammation gives Salmonella a competitive advantage.
This week on TIBDI: Th1 cells can activate macrophages with innate signals alone, retinoic acid is no hero in Crohn’s disease, and interleukin-22 allows some pathogens to thrive.

TCRs Are Not Always Needed

Macrophages and T cells play are important in inflammatory bowel disease (IBD). Learning about how these cells interact could lead to more insight about how IBD progresses. Hope O’Donnell of the University of Minnesota has now gleaned new insights about their interactions. She looked into the mechanisms behind non-cognate stimulation of Th1 cells (non-TCR stimulation) and their ability to secrete macrophage-activating IFNγ. Using genetically manipulated mice and a Salmonella infection model, her results show that Th1 (and CD8+) cells produce plenty of IFNγ as long as they are exposed to Toll-like receptor ligands and products of activated inflammasomes like interleukin (IL)-18 and IL-33. This study underscores the flexibility and strength of the adaptive immune response.

The Pitfalls of Retinoic Acid

Retinoic acid is the current darling of those studying anti-inflammatory responses as it has been shown that retinoic acid can lead to regulatory T cell development. To determine if retinoic acid was actually lowered during Crohn’s disease (CD), Dr. Theodore J. Sanders of the Blizard Institute in London measured retinaldehyde dehydrogenase (RALDH) activity in cell samples collected from CD patients and controls. In all of the dendritic cells and macrophages tested, the RALDH activity (ability to produce retinoic acid) was increased in CD patients compared to controls. Surprisingly, blocking retinoic acid signaling actually decreased the ability of monocytes to differentiate into TNFα-producing macrophages in in vitro tests. This would suggest that retinoic acid is less helpful in CD than what one would expect.

Salmonella Exploits Interleukin-22

Interleukin-22 is a cytokine that is designed to boost immune defenses at the gut-lumen interface. It induces antimicrobial peptide release along with factors that sequester essential metal ions (like iron) that bacteria need to grow. Dr. Judith Behnsen of the University of California has now discovered that these processes can be exploited by certain pathogens, like Salmonella. She found that IL-22 deficient mice were much less susceptible to Salmonella overgrowth. The reason was that Salmonella has the ability to compensate for the loss of ambient metal ions, while this is not the situation for many commensals. This allows Salmonella to create for a rather large niche for itself, while IL-22-induced processes decimate the competition.

References

Lost Faecalibacteria in IBD and IL-10 Influences Inflammasomes

Lab mouse
Mice deficient in IL-10 have over active inflammasomes, which cause colitis.
This week on TIBDI: A new review is published on the gut microbiome, IBD patients have less butyrate-producing bacteria, and IL-10 deficient mice are inflamed by inflammasomes.

Healthy Gut Microbiome in the Spotlight

The state of the intestinal microbiome, in essence the microbiota genome, is proving to be an important factor during disease development and progression. However before in depth studies are done to define disease-related microbiome profiles, it’s essential to also have an idea of what profiles define a healthy state. Dr. Emily B. Hollister of the Baylor College of Medicine and Texas Children’s Hospital reviewed the current literature. In general, the gut microbiome has approximately more than 10 million non-redundant genes, and a more diverse microbiome is healthier than less diverse one. Not everyone has the same types of populations of bacteria; most healthy microbiomes can be classified into three basic enterotypes. The influence of the microbiome extends to the immune system, cellular nutrition, cellular protection, metabolic processes and the functioning of the nervous system.

Lost Faecalibacteria in IBD

Many researchers are searching for the right probiotics to treat inflammatory bowel disease (IBD). To support this kind of search, simultaneous research investigating the microbiota in IBD patients as compared to healthy ones is also necessary. Wei Wang of Wuhan University recently published evidence that some major changes in the IBD microbiota are an increase in Bifidobacteria and Lactobacilli along with a loss of Faecalibacterium prausnitzii. The loss of F. prausnitzii was especially considerable in patients with active Crohn’s disease (CD). F. prausnitzii is known to produce butyrate, which is especially important for the formation of regulatory T cells in the colon. The author suggests that instead of focusing on common lactic acid producing probiotics in IBD, patients may be better served by looking at butyrate-producing probiotic species.

IL-10 Deficient Mice Inflamed by Inflammasomes

An interesting model of IBD is the interleukin (IL)-10 deficient mouse, which develops spontaneous colitis. Dr. J. Zhang of the Medical University of South Carolina found evidence that inflammasomes play a role in this model by promoting chronic intestinal inflammation. He found that loss of IL-10 increased the levels of NLRP3 and contributed to more inflammasome activity. This caused higher amounts of active IL-1β to be produced in gut tissues, which also led to increased colitogenic Th17. Blocking inflammsome activation successfully improved the colitis of the IL-10 deficient mice, suggesting that similar strategies could be useful in IBD.

References